
A Top-down Approach to Melody Match in
Pitch Contour for Query by Humming ?

Xiao Wu, Ming Li, Jian Liu, Jun Yang, and Yonghong Yan

Institute of Acoustics, Chinese Academy of Sciences.
{xwu, mli, jliu, yyan}@hccl.ioa.ac.cn

Abstract. In this paper, a novel frame-based algorithm called recursive
alignment(RA) for query-by-humming(QBH) application is presented.
Compared with other approaches, RA optimizes melody alignment prob-
lems in a top-down fashion which is more capable of capturing long-
distance information in human singing. Three RA variations which run
much faster at the expense of less accuracy are presented, and they can
be used as filters of QBH systems. A QBH system built upon RA and
its variations is also described briefly. The experiment results show that
the proposed algorithm compares favorably with other methods we have
implemented.

1 Introduction

Nowadays, more and more people obtain music via internet. Traditional mu-
sic search engines are usually based on metadata, and the user must type in
text information to get the intended song. In some situations, however, this text
interface is neither convenient nor friendly. Imagining when you have tried hun-
dreds of query words in the search bar but the target song never jumps out, just
because you forget the name of the song. This awkward situation can be solved
with the help of the QBH system, which allows the user to obtain the intended
song via a few seconds’ humming.

A lot of research papers on monophonic QBH have been published in the
past decade and many demo systems have been developed [1]. These approaches
can be roughly categorized into note-based and frame-based. Most research have
focused on note-based approaches which firstly segment the pitch sequence into
notes and then use certain technique to find out the most similar section in
the database. With a distance metric defined, approximate string matching [2]
are usually chosen as the solution for computing the score between query and
candidates [3–5]. Another way to align sequences is to use the Viterbi decoding
in Hidden Markov Model(HMM). Meek and Brimingham [6], whose system was
able to compensate many types of segmentation errors and singing errors, nov-
elly introduced HMM framework to model errors for QBH. On the other hand,
? This work is (partly)supported by Chinese 973 program (2004CB318106), National

Natural Science Foundation of China (10574140, 60535030), and Beijing Municipal
Science & Technology Commission(Z0005189040391)

some investigators believe that fragile note-segmentation greatly limits the per-
formance of note-based approaches and the grace notes in the database may
also deteriorate the note matching, so they concentrate on aligning the query
and target directly at the frame level. J.Jang who is a pioneer of this direction
used two-stage dynamic time wrapping(DTW) and achieved 78% top-1 ratio in a
800 song database [7]. This result outperformed all the the other QBH systems at
that time on similar tasks. Mazzoni and Dannenberg [8] formally addressed the
deficiency of note-based approaches. The performance comparison of the three
most popular melody matching algorithms, the note-level string matching, the
note-level Viterbi decoding with HMM and the frame-level DTW, can be found
in [9].

Notice that in all the existing research mentioned above, match score com-
puting between query and target works in a bottom-up fashion. For the reason of
having the mathematical guarantee to reach global optimal [10], almost all the
QBH systems, both note-level and frame-level ones, select DP-based approach
such as longest common substring(LCS), Viterbi decoding and DTW as the fi-
nal stage match algorithm. DP is a typical bottom-up optimizing algorithm,
which according to Cormen [11], solves problems by combining the solutions
of subproblems. In music retrieval, however, the similarity between query and
target not only depends on the accumulation of local match scores, but also
depends on the contour in the global view. Long-distance information such as
duration and rhythm is difficult to capture with bottom-up methods. J.Jang in
[12] showed linear scaling(LS) worked significantly better than Viterbi decoding
in their HMM-based QBH system. Their work is the first, as far as we know,
to abandon bottom-up tradition in the final scoring stage. However, the LS al-
gorithm is somewhat crude and works well only if the model is trained with
considerable data.

In this paper, we propose a novel frame-based melody matching algorithm
called recursive alignment (RA). RA is inspired by LS but alleviates its limita-
tion. RA is a top-down algorithm because it first tries to match the shape of
query and target in a global view and then makes finer local tuning, which works
in a different way compared with DP. Just as its name implies, RA optimizes
the alignment problem recursively. RA also computes the match score directly
in pitch contour and it needs no training data at all. In addition, We present
three variations of RA which run much faster at the expense of losing some ac-
curacy and they can be used as filters whose responsibility is to block most of
the unlikely candidates efficiently. Furthermore, we describe the whole system
built upon RA and its variations. The system employs 8 level filters to select
600 most probable melody sections out of millions. Although some filters utilize
some information from note-segmentation, the system does not rely much on it.
While designing the filters, we are inclined to choose global features instead of
those local ones with the intension of following top-down principle. In the end,
we will give experiment results which show our system can achieve 83.77% top1
retrieval rate while each query can be processed in about 3.3 seconds.

Section 2 describes the existing art and RA algorithm. Section 3 presents
three RA variations. Section 4 describes the QBH system built upon RA and
gives experiment results of the system.

2 Melody Match at Frame Level

This section mainly describes the matching algorithm used in frame-based music
retrieval systems. Sect.2.1 defines the problem. Sect.2.2 briefly introduces the ex-
isting frame-based matching algorithms such as DTW and LS. Sect.2.3 presents
our proposed approach in detail.

2.1 Problem Definition

In a frame-level QBH system, the humming stream is firstly put into a pitch
tracker frame by frame and then the output pitch sequence is converted to
semitone scale. In this paper the pitch sequence at semitone scale is marked
as (q1, q2, · · · , qn). After that, guided by certain rule, searching could be started.
For the consideration of runtime efficiency, indexing and filtering are usually
applied to reduce the candidates. When the steps above are done, we get a
set of candidates (C1, C2, · · · CN) each of which is composed of a number of
notes ((p1, d1), (p2, d2), · · · , (pm, dm)) where pi and di refer to the pitch and
duration of the ith note respectively1. Now the problem of melody matching
could be defined: given query frame sequence Q = (q1, q2, · · · , qn), note sequence
N = ((p1, d1), (p2, d2), · · · , (pm, dm)) and distance function dist(q, (p, d)), how to
compute the match score S between the two sequences. In most cases, optimal or
suboptimal alignment score is used as the match score. Once such an algorithm
of melody matching is available, the top-N candidates can be found by sorting
the scores of all the possible candidates.

2.2 Existing Frame-based Matching Algorithms

Dynamic programming [10] is very popular in the filed of music retrieval and is se-
lected as the final scoring algorithm by most QBH systems. DTW, which belongs
to DP category, is a frame-to-frame algorithm to find the optimal alignment path.
In DTW, candidate N is expanded to a frame sequence N

′
= (p

′
1, p

′
2, · · · , p

′
l) ac-

cording to the duration of each note. Di,j which represents the minimum cumu-
lative cost up to the ith frame in the query and the jth frame in the candidate
can be computed in O(n · l) time with the following formula:

Di,j = d(qi, p
′
j) + min(Di−1,j−1, Di−1,j−2, Di−2,j−1) (1)

However, DTW may suffer from losing the global structure while optimization.
For example, in Fig.1 where each line represents an alignment path, l1 and l2

1 For simplicity, we do not distinguish the representation of p and d for different
candidates.

are intuitively more reasonable than l3 and l4, since people rarely change their
singing tempo frequently. This kind of information is usually difficult, or at least
computational expensive, to capture with DP. Although many DTW variations
have been developed to get better control over the long-distance structure [7, 8,
13], the natural bottom-up framework limits the performance of DTW.

2
l

1
l

3
l

candidate

q
u

e
ry

4
l

Fig. 1. Examples of alignment between query and candidate

Linear Scaling, which is depicted in Algorithm 1, is another way to match
melody and needs only O(n) time. Unlike DTW which builds the global solution
upon local ones, LS simply chooses l1(see Fig.1) as the alignment path. Though
LS seems to be a little crude, J.Jang’s research [12] showed it worked much better
than Viterbi decoding with well trained HMM. The deficiency of LS is also quite
obvious: local mismatch in rhythm may deteriorate the global matching, and it
needs training to capture human’s singing habits.

Algorithm 1 LinearScaling(Q,N)
1: INPUT: Q = (q1, q2, · · · , qn), N = ((p1, d1), (p2, d2), · · · , (pm, dm))
2: i ← 1, j ← 1
3: Dura ← ∑m

k=1
dk, Dist ← 0, Scale ← n/Dura

4: for all i such that 1 ≤ i ≤ m do
5: t ← j + Sacle · di

6: Dist ← Dist +
∑t

k=j
dist(qk, pi)

7: j ← t + 1
8: end for
9: return −Dist

2.3 The New Top-down Matching Algorithm

Our new algorithm called recursive alignment(RA) which is described in Algo-
rithm 2 roots from LS but alleviates its restrictions. This algorithm differs from

DP because it starts optimization from a global view, and it also differs from
LS because it tries to tune local matching recursively in order to optimize the
alignment.

Algorithm 2 RecursiveAlign(Q,N, S, D)
1: INPUT: Q = (q1, q2, · · · , qn), N = ((p1, d1), (p2, d2), · · · , (pm, dm))
2: INPUT: S = ((sx1, sy1), (sx2, sy2), · · · , (sxn, syn))
3: INPUT: D {maximum recursion depth allowed, usually set to 3 or 4}
4: i ← 0, j ← bm/2c, maxScore ← −∞
5: sc ← ∑j

l=1
dl/

∑m

l=1
dl

6: N1 ← ((p1, d1), · · · , (pj , dj)), N2 ← ((pj , dj), · · · , (pm, dm))
7: for all (sx, sy) in pair set S do
8: k ← bsx · sc · nc
9: Q1 ← (p1, · · · , pk), Q2 ← (pk, · · · , pn)

10: score ← LinearScaling(Q1, N1) + LinearScaling(Q2, N2)
11: if score is larger than maxScore then
12: maxScore ← score
13: i ← k
14: end if
15: end for
16: if D equals to 0 then
17: return maxScore
18: else
19: Q1 ← (p1, · · · , pi), Q2 ← (pi, · · · , pn)
20: return RecursiveAlign(Q1, N1, S, D − 1) + RecursiveAlign(Q2, N2, S, D − 1)
21: end if

The basic idea of RA comes from the fact that the query and the target
are similar if and only if they roughly share the same shape in the global view.
Usually the optimal alignment is a nonlinear transformation from query to tar-
get. This can be approximated by dividing the target section into two parts and
each half uses its own linear scale2. The near-optimal scale factors for the two
halves can be obtained through a brute-force search, that is, given a finite set of
possible scale pairs {(sx1, sy1), (sx2, sy2), · · · , (sxn, syn)}, each pair is evaluated
and the one with minimum distance is selected as the result. Once the top-level
scale pair is decided, the alignment problem is divided into two subproblems and
they can be solved with the same steps described above. Notice that during the
RA optimization, we make the higher level decision ahead of lower ones. In this
way, the alignment problem can be optimized in a top-down fashion recursively.
Fig.2 gives an example of the optimization process.

As shown in Algorithm 2, RA utilizes LS as a subroutine. An important point
should be noticed is the distance function dist(q, p) we used in LS is

dist(q, p) = min {(q − p)2 , f loor} (2)
2 In fact, the scale of one half is decided by that of the other half.

m3m/4m/2m/40

(a) recursion depth=0

m3m/4m/2m/40

(b) recursion depth=1

m3m/4m/2m/40

(c) final alignment

Fig. 2. An example of RA(|S| = 3, D = 1). The bold line, the solid line and the dash
line represent the real path, the best path in current level and the discarded path
respectively.

where floor is a predefined constant to limit the contribution of any single
aligned pair. Our study shows that the introduction of floor greatly increases
the performance of the algorithm. A possible explanation could be: using the
Euclidean distance with the form y =

∑
x2, unmatched pairs play far more

significant roles than matched ones and introducing floor can reduce the impact
caused by singular pairs.

Now we discuss RA in terms of graph search. Although RA dynamically
extends its search space according to the previous decisions, the entire search
graph can be determined if Q,N ,S and D are known. As is shown in Fig.3, each
path in the graph is a folded line of 2N+1 sects. With proper S, paths like l3 or
l4 in Fig.1 will not be allowed, for the higher level scales which are determined
ahead of the local ones restrict the local tuning within a reasonable range. In
generated search graph, RA can be viewed as a heuristic search with a global
pruning strategy. Here an attractive step is to use a classic left-to-right search
algorithm such as DP to search in the graph generated by RA, which seems to
combine the advantages of promising to find the optimal path and confining the
search with human singing habits. However, our experiment results in the latter
section show that pure RA performs slightly better than the hybrid algorithm
which may imply that RA’s top-down pruning strategy is quite effective.

The computational complexity of the proposed algorithm can be estimated
quite straitforwad. At each recursion, RA performs LS for each possible scale
in S, so the time complexity is O(k · n) where k is a constant equal to D · |S|.
In practice, RA could be faster because only few frames need to be recomputed
when the scale factor changes.

3 Variations of the RA

This section will present three variations of RA. The motivation of this section
is to find out faster algorithms based on the original RA at the expense of some
accuracy loss. In our QBH system to be described in Sect.4.1, these variations are
used as filters which are responsible for blocking most of the unlikely candidates

candidate

q
u

e
ry

m3m/4m/2m/40

Fig. 3. Search space generated by RA (|S| = 3, D = 1)

efficiently. As the bottleneck of RA is the frame by frame computation in LS,
the first two variations attempt to make LS work in note-level while the third
variation attempts to compute the score of several frames in parallel.

3.1 Variation I

This variation attempts to compute the LS at note-level. Notice the frame-level
summation

∑t
k=j dist(qk, pi) in line6 of Algorithm 1 which calculates the scores

of all query frames aligned to the ith note. This summation could be rewritten
as

t∑

k=j

(qk − pi)2 = (
t∑

k=1

q2
k −

j−1∑

k=1

q2
k)− 2pi(

t∑

k=1

qk −
j−1∑

k=1

qk) + (t− j) · p2
i (3)

on the condition that the floor value in (2) is ignored. The value of (3) can
be obtained immediately if we have pre-computed

∑l
i=1 qi and

∑l
i= q2

i for all
l. This idea is inspired by Viola who introduced a similar skill to avoid repeat
computation in human face detection [14]. By applying this, the time complexity
can be reduced from O(kn) to O(km) where m ¿ n. The drawback is that the
singular points may badly deteriorate the performance since the distance floor
is ignored.

3.2 Variation II

The second variation also computes LS at note level just like the first one
does except that it utilizes information from note-segmentation. Although note-
segmentation is error prone, this variation is quite insensitive to these errors.
Assume query Q is segmented into r notes ((p

′
1, d

′
1), (p

′
2, d

′
2), · · · , (p

′
r, d

′
r)), then a

note-to-note RA algorithm can be used to compute the match score. As the score

computation between note pair (p
′
, d
′
) and (p, d) are performed no more than

m + r times, the time complexity is limited to O(k(m + r)). Moreover, the dis-
tance floor in (2) can also be considered. The drawback is that some information
is lost when the real-value frames are quantified into notes.

3.3 Variation III

The third variation works differently from the previous two. It first divides the
frequency into b sub-bands and quantifies every frame to 0 or 1 in each band
which is shown in Fig.4. Then RA is performed in each band and the final
score is the score summation of all bands. The intention of this variation is to
avoid expensive floating-point computation, and further more, to make score
calculation parallel with bit-operation utilizing the 32-bit bandwidth of modern
computers. The complexity of this variation is O(kbn/32) and it runs extremely
efficiently if the codes are carefully programmed. The drawback is that a lot of
information is lost during the binarization.

band1

band2

band3

band4

0 0 0 0 0

0 0

0 0 0 0

0 0 0 1 0 0

1 1

0

1

1

11 1

1

1

1

P
it

c
h

Time

Fig. 4. RA variation III

4 Performance Evaluation

4.1 System description

The framework of our QBH system is presented in Fig.5. The frame size is 25 ms
frames with 15 ms overlapping. The pitch tracker we used here is based on an
improved version of sum harmonic algorithm [15]. Note segmentation is based on
sum harmonic energy and detailed description can be found in [16]. The first a
few segmented notes are passed to the previous five filters to filter 8000 melody
sections out of millions. Then the last three filters use all the query notes to
generate the 600 most probable candidates. At last, RA is performed on all the
survivals for rescoring.

Table 1 lists the eight filters and the final rescorer used in the system. The
idea of the cascade filters comes from Viola [14] who used about 20 level filters
to detect human faces. In fact, each filter in Table 1 can be viewed as a classifier

Pitch Tracking

Note-segmentation

Lv1

Filter

humming piece

Lv2

Filter
... Lv8

Filter
Rescore

Top-N Candidates

Fig. 5. System architecture

with very high detect rate, and generally, the former filters are more efficient
but less accurate than the latter ones. To follow the top-down principle, we also
prefer global features such as global highest pitch and histogram to local ones
while designing the filters.

There are two points need to be mentioned. Firstly, to compensate errors
from note-segmentation, we add very loose limit on the range of target notes:
if the query has r notes, then all the sections with notes ranging from 0.5r
to 1.8r are considered to be acceptable. Meanwhile, the RA VarII who utilizes
note-level information of query is also insensitive to segmentation errors. So the
note-segmentation may not affect the system performance too much. Secondly,
since the query and the candidate are usually from the different keys, we always
subtract their own mean pitch during the score computation. This simple scheme
works well in most cases indeed.

Table 1. Cascade classifiers

Level Feature(s) Global Source Pass Description

1 Real valued frames First 3-7 notes 25% RA VarII and Index

2 Binary quantified frames
√

1st-14th notes 30% RA VarIII

3 Variance, highest pitch, etc.
√

1st-14th notes 35% Linear classifier

4 Real valued frames
√

1st-14th notes 25% RA VarI

5 Segmented notes
√

1st-14th notes 8000 RA VarII
6 Variance, highest pitch, etc.

√
All notes 50% Linear classifier

7 Pitch histogram
√

All notes 40% Linear classifier
8 Segmented notes

√
All notes 600 RA VarII

∗ Real valued frames
√

All notes TopN Rescore with RA

4.2 The Song Database and the Test Data

The test data are 875 wave files recorded with 8000 Hz sample rate and encoded
in 16bit. They are hummed by 15 average singers. Each singer is required to select

at least 15 out of 36 song pieces and hum each one for three times. Roughly the
875 waves have a flat distribution over the 36 pieces.

The database contains 1180 songs with midi format and each song has 400
notes in average. Most of the songs in the database are Chinese pop songs. As
we find in practice that most people shorten the long notes when they sing, we
compress the duration d which is longer than the song average duration d to

d + log
[
1 + α(d− d)] /α

where α is a predefined constant.

4.3 Experiment Results

It is really difficult to compare different QBH systems, as the retrieval per-
formance is influenced by many factors such as test set, recording condition,
database composition and so on. Still, we implement some existing approaches
and attempt to make comparison in identical test condition.

Table 2. Evaluation results

RA* LS DTW(62ms) DTW(10ms) RAgraph+DP

Top1 83.77% 68.40% 80.46% 82.17% 83.43%
Top2 86.17% 72.57% 83.09% 83.31% 85.94%
Top3 87.66% 75.09% 84.23% 84.34% 87.77%
Top4 88.46% 76.91% 84.91% 85.26% 88.23%
Top5 89.26% 77.94% 85.60% 86.29% 88.91%
Top6 89.60% 78.86% 86.40% 86.97% 89.26%
Top7 89.60% 79.77% 87.09% 87.77% 89.71%
Top8 90.17% 80.23% 87.43% 88.23% 89.83%
Top9 90.17% 81.03% 88.00% 88.69% 89.94%
Top10 90.29% 81.71% 88.23% 88.91% 90.17%

RunTime 3.3sec 2.9sec 3.3sec 10.5sec off-line
* With four recursions and ten possible scale pairs. (D = 4, |S| = 10)

The QBH system is evaluated with the test data described above in the
1180 song database. We have implemented frame-based DTW [7] and LS [12]
for comparison. Aimed to find the utmost of DTW, we also implemented a more
accurate but less efficient DTW which uses 10 ms frame other than the 62.5 ms
frame in J.Jiang’s system. For the reason of impartiality, RA is replaced with
DTW or LS only in the rescoring stage while leaving all the filters unchanged.
Experiment results in Table 2 suggest that the RA algorithm works better than
either DTW or LS. To evaluate the validity of RA pruning, we implemented
a hybrid algorithm which utilizes RA to generate search space and utilizes DP
to find the optimal path(see Sect.2.3). The last column of Table 2 presents the

results of the hybrid algorithms. As shown in Table 2, RA performs slightly
better than the hybrid algorithm, which implies the RA global pruning strategy
is quite effective.

Table 3 present results of RA tested on queries with different duration. The
results show that the system performs well if query is between 7 and 15 seconds.
What puzzles us is the performance declines when the queries are longer than 13
seconds, which seems to be counter intuition. The explanation could be one of
the following two: (1) The filters are not robust enough with long query. (2) The
RA algorithm gets less powerful when query duration increases. By analyzing
the errors, we found most of the missed queries are blocked by filters, which
implis the former explanation may be more appropriate.

Table 3. Results of RA Tested on queries with different duration

Duration Count Percent Top1 Top5 Top10

< 5 sec 30 3.43% 63.33% 76.67% 76.67%
5 - 7 sec 272 31.09% 77.21% 88.97% 90.07%
7 - 9 sec 277 31.66% 86.64% 90.61% 91.70%
9 - 11 sec 142 16.23% 83.80% 90.14% 90.14%

11 - 13 sec 43 4.91% 90.70% 93.02% 93.02%
13 - 15 sec 57 6.51% 89.47% 91.23% 91.23%
≥ 15 sec 54 6.17% 83.33% 83.33% 88.89%

5 Conclusions

In this paper, we proposed a novel frame-based algorithm called recursive align-
ment(RA) for music retrieval. Compared with existing art, RA optimizes melody
alignment problems in a top-down fashion which we believe are more capable of
capturing long-distance information in human singing. We also presented three
variations of RA which run much faster at the expense of less accuracy and
they can be used as filters of QBH systems. Moreover, we briefly described our
whole system built upon RA and its variations. We believe that melody matching
should start from global view, which is being supported by our experiments.

References

1. Typke, R., Wiering, F., Veltkamp, R.: A survey of music information retrieval
systems. In: Proc of ISMIR. (2005)

2. Lemström, K.: String Matching Techniques for Music Retrieval. PhD thesis,
University of Helsinki, Finland (2000)

3. Ghias, A., Logan, J., Chamberlin, D., Smith, B.: Query by humming: musical
information retrieval in an audio database. In: Proc of ACM Multimedia. (1995)

4. McNab, R., Smith, L., Witten, I., Henderson, C., Cunningham, S.: Towards the
digital music library: tune retrieval from acoustic input. In: Proc of ACM interna-
tional conference on Digital libraries. (1996)

5. Parker, C.: Applications of binary classification and adaptive boosting to the
query-by-humming problem. In: Proc of ISMIR. (2005)

6. Meek, C., Birmingham, W.: Applications of binary classification and adaptive
boosting to the query-by-humming problem. In: Proc of ISMIR. (2002)

7. Jang, J., Chen, J., Kao, M.: A query-by-singing system based on dynamic pro-
gramming. In: International Workshop on Intelligent systems Resolutions. (2000)

8. Mazzoni, D., Dannenberg, R.: Melody matching directly from audio. In: Proc of
ISMIR. (2001)

9. Dannenberg, R., Birmingham, W., Tzanetakis, G., Meek, C., Ning, N.: The musart
testbed for query-by-humming evaluation. In: Computer Music Journal. (2004)

10. Bellman, R.: Dynamic Programming. Princeton Univ. Press (1957)
11. Cormen, T., Leiserson, C., Rivest, R.: Introduction to algorithms. MIT Press

(1990)
12. Jang, J., Hsu, C., Lee, H.: Continuous hmm and its enhancement for

singing/humming query retrieval. In: Proc of ISMIR. (2005)
13. Duchi, J., Phipps, B.: Query by humming: Finding songs in a polyphonic database.

In: Stanford Computer Science Department. (2005)
14. Viola, P., J.M.: Robust real-time object detection. In: International Journal of

Computer Vision. (2002)
15. Li, M., W.Y.Y.T.: High efficient pitch tracking method for tonal feature extraction.

In: Proc of International Conference of Chinese Computing. (2001)
16. Li, M., Y.Y.: An humming based approach for music retrieval. In: Proc of National

Conference on Man-Machine Speech Communication. (2005)

